Relativistic particle acceleration in an electron-positron plasma with a relativistic electron beam

نویسندگان

  • J. Zhao
  • J. I. Sakai
  • T. Neubert
چکیده

Results from three-dimensional electromagnetic particle simulations of an electron-positron plasma with a relativistic electron beam (y=2) are presented. As part of the initial conditions, a poloidal magnetic field is specified, consistent with the current carried by the beam electrons. The beam undergoes pinching oscillations due to the pressure imbalance. A transverse two-stream instability is excited with large helical perturbations. In the process, background electrons and positrons are heated and accelerated up to relativistic energy levels. Only background electrons are accelerated farther along the z direction due the synergetic effects by both the damped transverse mode and the accompanying electrostatic waves caused by the breakdown of the helical perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weibel Instability and Associated Strong Fields in a Fully 3d Simulation of a Relativistic Shock

Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagn...

متن کامل

Acceleration Mechanics in Relativistic Shocks by the Weibel Instability

Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks may be responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with relativistic electron-ion or electron-positron jet fronts propagating into an unmagneti...

متن کامل

Particle Acceleration and Magnetic Field Generation in Electron - Positron Relativistic Shocks

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associ...

متن کامل

Particle acceleration in the driven relativistic reconnection

We study the compression driven magnetic reconnection in the relativistic electron-positron plasma. Making use of a 2.5D particle-in-cell code, we simulated compression of a magnetized plasma layer containing a current sheet within it. We found that the particle spectrum within the reconnecting sheet becomes nonthermal; it could be approximated by a power-law distribution with an index of -1 an...

متن کامل

New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gammaray bursts (GRBs), active galactic nuclei (AGNs), and microquasars commonly exhibit power-law emission spectra. Recent PIC simulations of relativistic electron-ion (or electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999